
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 9, Issue 10, October (2019)

ISSN: 2395-5317 ©EverScience Publications 1

Performance Comparison of Optical Character

Recognition Approaches for the Hindi Language

Sushmitha Jogula

Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Hyderabad,

Telangana, India.

Asfan Sajid

Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Hyderabad,

Telangana, India.

Abstract – Optical Character Recognition (OCR) is the digital

conversion of images of typed, handwritten, or printed text from

a scanned document or a photo into machine-encoded text. OCR

engines are typically designed and used to read typed (machine-

printed) characters of popular languages such as English, which

are generally used as a primary mode for communication.

Although Hindi language is a preferred medium of

communication in many parts of India, much research has not

been carried out in the domain of Hindi character recognition.

The objective of this paper is to investigate the principles of OCR

and compare the efficiency of character recognition functionality

and its subsequent electronic conversion to text for the Hindi

language. This work involves using the MSER (Maximally Stable

Extremal Regions) algorithm and various additional pre-

processing techniques for enhancing the performance of OCR for

Hindi in the MATLAB environment. The results of this work are

subjected to comparison with an existing open-source OCR engine

Tesseract

Index Terms – Optical Character Recognition (OCR), Maximally

Stable Extremal Regions (MSER), Character Accuracy (CA),

Character Error Rate (CER).

1. INTRODUCTION

1.1. Optical Character Recognition

Optical Character Recognition (OCR) is a comprehensive

process of converting scanned or printed images containing

textual instances or otherwise handwritten text into a readable

and writable format, i.e., editable text to enable its further

processing. This technology allows a machine to recognize the

text automatically when provided with necessary input [1]. It

can be referred to as an offline character recognition process in

which the system scans and recognizes static images of the

characters. It is a field of research in artificial intelligence,

signal processing, pattern recognition, and machine vision [2].

OCR can be subdivided into Handwritten Character

Recognition and Printed Character Recognition. Handwritten

character recognition is more challenging to be implemented

than Printed character recognition due to diverse human

handwriting styles and customs. In Printed character

recognition, the images to be processed contain standard fonts

such as Times New Roman, Arial, Courier [2]. OCR is

designed in a way to enable processing of images that contain

primarily textual instances, with very little to non-existent non-

text clutter. [3]

Figure 1 Block Diagram of OCR

1.2. Working of OCR

The three primary phases of the OCR process include:

1.2.1. Pre-processing

OCR software often “pre-processes” images to improve the

chances of successful recognition. Few techniques include:

 De-skew: If the input image or document was not

correctly aligned during scanning, it might need to be

tilted a few degrees counter clockwise or clockwise to

make lines of text perfectly horizontal or vertical.

 Binarization: Converts an image from color or

grayscale to black-and-white image, also known as a

“binary image” because there are two colors. This task

is performed for separating the text from the

background and is necessary as most recognition

algorithms work only on binary images, and the

effectiveness of this step impacts the quality of the

character recognition stage significantly [4][5].

 Line and word detection: Establishes baseline for

word and character shapes and separates words if

necessary.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 9, Issue 10, October (2019)

ISSN: 2395-5317 ©EverScience Publications 2

 Character isolation or Segmentation: For per-

character OCR, multiple characters that are connected

due to image artifacts must be separated, and single

characters that are broken into multiple pieces must be

connected.

1.2.2. Character Recognition

There are two ways in which character recognition is

performed in OCR:

Matrix Matching involves comparing an isolated glyph in the

input image to a stored glyph of similar font and the same scale

on a pixel-by-pixel basis. This technique works best with

printed text and does not work well when new fonts are

introduced.

Feature Extraction breaks down glyphs into “features” like

lines, closed loops, line direction, and line intersections and

makes the recognition process computationally efficient [6].

Nearest neighbor classifiers such as the k-nearest neighbor

algorithm are used to compare image features with stored glyph

features and select the closest match.

1.2.3. Post-processing

OCR accuracy can be improved with the knowledge of the

semantics of a language being scanned, and with the output

being constrained by a lexicon – a list of words that are allowed

to occur in a document; this can either be all the words in the

language, or a more technical lexicon of a particular field.

Near-neighbor analysis makes use of words that frequently co-

occur to correct errors. The Levenshtein Distance algorithm

can also be used to optimize OCR results further [7].

2. RELATED WORK

2.1. Existing System

Today, many types of OCR software are available in the market

whose accuracy rate varies from 71% to 98%, but only a few

of them are open source and free. Tesseract is one of the open-

source and free OCR engines providing a high accuracy rate of

up to 95% [8], but in the case of some complex images having

multi-layered backgrounds or fancy text, Tesseract offers better

accuracy in results if the pictures are in the grayscale mode

instead of color. It is written using C and C++, so it is platform-

independent. Initially developed for English language

recognition, its later versions provide support for more than

100 languages out of the box, where each language comes with

a trained language data file which must be kept in the Tesseract

home folder. Working of Tesseract is similar to that of a

scanner. It has a simple interface to take the input using basic

commands. The basic Tesseract command takes two

arguments: input image containing text and output text file with

default .txt extension, respectively. First, an image with text is

given as input to Tesseract, which is then processed by

Tesseract, and the output file gets generated [8]. Tesseract OCR

3.01 is capable of detecting the Hindi language, but it still needs

some enhancements to improve the performance. Hindi

language recognition accuracy is quite low as the combinations

of conjunct characters are not easily separable due to partial

overlapping [9].

Some limitations of the Tesseract OCR Engine include:

 Tesseract was originally developed for the English

language only. Any language that has different

punctuation and numbers is going to be misinterpreted

to an extent.

 Tesseract can handle only left-to-right languages.

 It is not able to recognize handwriting and is limited

to about 64 fonts in total.

 It requires pre-processing to improve the OCR results,

and the images need to be scaled appropriately, have

as much image contrast as possible, and have text with

horizontal alignment.

Recognition of text from an image is still a challenging task

due to a wide range of text appearing in images. Text in images

can have different font sizes, styles, distortions, and contrasts

due to different lighting conditions [10]. As the accuracy of text

regions of the image increases with efficient pre-processing

methods and algorithms, the accuracy of OCR for that image

also increases. This problem is even more severe for images

containing non-English text (in this case, Hindi) because the

conventional OCR engines are developed for recognizing

English characters only and produce highly accurate results for

OCR for English language only. For recognizing other

language characters, the existing OCR engines must be trained

accordingly with the respective language packages and

datasets. Even after training the existing OCR engines, they fail

to recognize Indic and Devanagari scripts such as Hindi,

Sanskrit, Bangla to the utmost accuracy due to the complex

nature of the language, lack of large unique word list, linguistic

resources and reliable language models [11][12].

3. PROPOSED MODELLING

The proposed work uses different pre-processing techniques

like Grayscaling, Thresholding and Binarization and character

recognition algorithms like MSER (Maximally Stable

Extremal Regions) for achieving the highest possible accuracy

of OCR for Hindi language characters and text, when compared

to existing OCR engines which do not make use of these

improved pre-processing methods, and hence produce less

accurate OCR results for Hindi language characters. MATLAB

is used for implementation because of the available inbuilt

OCR language packages and functions and predefined methods

for grayscaling, binarizing and MSER detection. The results of

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 9, Issue 10, October (2019)

ISSN: 2395-5317 ©EverScience Publications 3

the work are then compared with that of Tesseract. In the first

step, an image containing Hindi text is given as input to both

Tesseract and the proposed algorithm in MATLAB. In the

second step, the image undergoes various enhanced pre-

processing stages before it is given as input to OCR. In the third

step, the results from both MATLAB and Tesseract are

obtained and are compared with each other.

3.1. Methodology

3.1.1. System Design

Figure 2 System Design for Proposed System

3.1.2 Algorithm Used: MSER

Maximally Stable Extremal Regions (MSER) is a feature

detection algorithm. It extracts several co-variant regions,

called MSERs, and enables identification of blobs from an

image. An MSER is a stable connected component with

uniform intensity levels under varying levels of threshold.

‘Extremal’ refers to the property that all pixels inside the

MSER have either higher (bright extremal regions) or lower

(dark extremal regions) intensity than all the pixels on its outer

boundary [13][14]. This method is efficient for finding text

regions because the consistent color and high contrast of text

leads to stable intensity profiles [15].

In this operation, firstly, all pixels by sorted by gray value.

Then, pixels are incrementally added to each connected

component as the threshold is changed, and the area is

monitored. Regions whose variation with respect to the

threshold is minimal are defined as maximally stable [13].

 A simple luminance thresholding of the image is

performed, and all the pixels below a threshold are

made white, and the others black.

 Connected components (“Extremal Regions”) are

extracted.

 A threshold for which an extremal region is

“Maximally Stable,” i.e., the local minimum of the

relative growth of its square is determined [14].

 Approximate a region with an ellipse and keep those

regions descriptors as features.

3.2 Implementation

This work comprises of many phases [10] such as:

1. Input image selection

In the first step, the user is prompted to select an input image.

Figure 3 Selected input image

2. Conversion of input RGB image to Grayscale image

The input image is then converted into a grayscale format and

displayed to the user. All further operations are performed on

this grayscale image.

Figure 4 Grayscale format of the selected input image

Input

Image

Grayscaling

Geometric

Properties

Stroke

Width

MSER

Text Detection

Removing

 non-text

regions

Merge text

regions
OCR Output

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 9, Issue 10, October (2019)

ISSN: 2395-5317 ©EverScience Publications 4

3. Detecting text regions using MSER

MSER algorithm is used for detecting and segregating text

regions from non-text regions of the image, which helps in

identifying text in the image correctly, thereby increasing the

accuracy of OCR [16].

Figure 5 Detected MSER Regions

4. Removing non-text regions from the image based on:

(i) Basic geometric properties

In the next step, the non-text regions are removed from the

input image based on basic geometric properties. In addition to

text regions, the MSER algorithm also detects many other

stable regions in the image that are non-text. Several geometric

properties can be used for discriminating between text and non-

text regions such as Aspect Ratio, Eccentricity, Euler Number,

Extent, Solidity [15].

Figure 6 Removing non-text regions based on Geometric

Properties

(ii) Stroke Width variation

Stroke width, a common metric used to discriminate between

text and non-text regions, can be defined as a measure of the

width of the curves and lines that make up a character. Text

regions tend to have less variation of stroke width than non-text

regions [15].

Figure 7 Removing non-text regions using Stroke width

variation

5. Merge text regions for final detection region

At this stage, all the detection results are composed of

individual text characters. Then, the individual text characters

must be merged into words or text lines for recognizing actual

words in the image, which has more meaningful information

than unique characters. The approach for merging individual

text regions into words or text lines is to determine the

neighboring text regions and form a bounding box around

them. Due to this, the bounding boxes of neighboring text

regions overlap in such a way that the text regions that belong

to the same word or text line form a chain of overlapping

bounding boxes. Now, the overlapping bounding boxes are

merged to form a single bounding box around individual words

or text lines [15].

Figure 8 Expanded Bounding Boxes text

Figure 9 Final Detected text

After all the steps have been executed, the resulting image is

given as input to the OCR tool to obtain the output in the form

of an editable text.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 9, Issue 10, October (2019)

ISSN: 2395-5317 ©EverScience Publications 5

Figure 10 Input image without noise

Figure 11 Final output in text file

4. RESULTS AND DISCUSSIONS

4.1. Comparative Analysis

To perform the Comparative Analysis of both the OCR tools,

two performance measures are considered: Character Accuracy

(CA) and Character Error Rate (CER) [17]. CA is used to

evaluate whether all the characters are identified accurately or

not. CER helps in determining the percentage of characters that

are not appropriately recognized. Here, two types of input

images are considered: 1-line text image and handwritten text

image.

Figure 12 Input Image- I

Figure 13 OCR result in Tesseract for Input Image- I

Figure 14 OCR result in MATLAB for Input Image- I

5.1.1. Comparative Analysis for Input Image-I:

Table 1 Comparative Analysis-I

Figure 15 Input Image- II

Fig 16: OCR result in Tesseract for Input Image- II

Figure 17 OCR result in MATLAB for Input Image- II

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 9, Issue 10, October (2019)

ISSN: 2395-5317 ©EverScience Publications 6

5.1.2. Comparative Analysis for Input Image-II:

Table 2 Comparative Analysis-II

5.2. Performance Measurement

To find the Character Accuracy (CA) and Character Error Rate

(CER) from the resultant text documents, i.e., to verify whether

an OCR tool has converted all the characters available in the

input image correctly or not, the following formula is used [17]:

Character Accuracy (CA) = (a/n) *100

Character Error Rate (CER) = 100-CA

Where a=Total number of characters identified correctly in

the resultant text document

 n=Total number of characters in the input image

Table 3 Comparison between OCR Results of Tesseract and

MATLAB

Figure 18 Graph showing comparison of CA% results

5. CONCLUSION

This work focuses on evaluating the efficiency and juxtaposing

the accuracy of the two described approaches of OCR for the

Hindi language. It analyzes the fundamentals of OCR and the

techniques applied to enhance its performance for the Hindi

language, which facilitates the users to have a precise and

readily accessible tool for recognizing and understanding the

language quickly and effectively. In this work, two different

methodologies, an open-source tool Tesseract and the proposed

system using the MSER algorithm executed in MATLAB, have

been implemented, and the outcomes have been assessed using

performance measures. In the future, the implemented MSER

algorithm can be extended further for recognition of other Indic

scripts.

REFERENCES

[1] Chirag Patel, Atul Patel, Dharmendra Patel. (2012). Optical Character

Recognition by Open Source OCR Tool Tesseract: A Case Study.
International Journal of Computer Applications (0975 – 8887) Volume

55– No.10.

[2] Mahesh Jangid. (2011). Devanagari Isolated Character Recognition by
using Statistical features. International Journal on Computer Science and

Engineering (IJCSE), Vol. 3 No. 6.

[3] Ravina Mithe, Supriya Indalkar, Nilam Divekar. (2013). Optical
Character Recognition. International Journal of Recent Technology and

Engineering (IJRTE) ISSN: 2277-3878, Volume-2, Issue-1.

[4] Mehmet Sezgin, Bülent Sankur. (2004). Survey over image thresholding
techniques and quantitative performance evaluation. Journal of

Electronic Imaging 13(1), 146–165.

[5] Oivind Due Trier, Anil K. Jain. (1995). Goal-Directed Evaluation of
Binarization Methods. IEEE Transactions on Pattern Analysis and

Machine Intelligence. 17 (12): 1191–1201.

[6] What's OCR? (2019, September 22). Retrieved from
http://www.dataid.com/aboutocr.htm

[7] Chris Woodford. (2018, December 11). Optical Character Recognition.

Retrieved from http://www.explainthatstuff.com/how-ocr-works.html
[8] Sahil Badla. (May 2014). Improving the Efficiency of Tesseract OCR

Engine. SJSU ScholarWorks.

[9] Nitin Mishra, C. Patvardhan, C. Vasantha Lakshmi, Sarika Singh.
(February 2012). Shirorekha Chopping Integrated Tesseract OCR Engine

for Enhanced Hindi Language Recognition. International Journal of

Computer Applications (0975 – 8887) Volume 39– No.6.
[10] Geethanjali Adlinge, Shashikala Kashid, Tejasvini Shinde,

Virendrakumar Dhotre. (May 2016). Text Recognition in Images using

MSER Approach. International Research Journal of Engineering and
Technology (IRJET) Volume: 03 Issue: 05.

[11] B.Indira, Muhammad Shuaib Qureshi, Mahaboob Sharief Shaik, Rashad

Mahmood Saqib, MV Ramana Murthy. (December 2012). Devanagari

Character Recognition: A Short Review. International Journal of

Computer Applications (0975–8887) Volume 59– No.6.

[12] Naveen T. S. (December 2014). Word Recognition in Hindi Scripts.

Center for Visual Information Technology, International Institute of

Information Technology Hyderabad, India.

[13] T. Kranthi, Jagadish Gurrala, G. Santhoshi. (2017). An Improved scheme
of Optical Character Recognition Algorithm, International Journal of

Innovations in Engineering and Technology (IJIET), Volume 9 Issue 1.

[14] Maximally Stable Extremal Region (MSER) Detectors. (2019,
September 25).

Retrieved from http://www.micc.unifi.it/delbimbo/wp-

content/uploads/2010/05/A23_image_features_v_mser.pdf

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 9, Issue 10, October (2019)

ISSN: 2395-5317 ©EverScience Publications 7

[15] Automatically Detect and Recognize Text in Natural Images. (2019,

September 25).
Retrieved from

https://au.mathworks.com/help/vision/examples/automatically-detect-

and-recognize-text-in-natural-images.html
[16] Chaitanya R. Kulkarni, Ashwini B. Barbadekar. (2017). A Real Time

Text Detection & Recognition System to Assist Visually Impaired,

International Journal of Science and Research (IJSR), Volume 6, Issue 7.
[17] Dr. S.Vijayarani and Ms. A.Sakila. (July 2015). Performance

Comparison of OCR Tools. International Journal of UbiComp (IJU),

Vol.6, No.3.
[18] Archana A. Shinde, D.G.Chougule, (2012). Text Pre-processing and Text

Segmentation for OCR. International Journal of Computer Science

Engineering and Technology, Issue 1, pp 810-812.

Authors

Sushmitha Jogula
Department of Computer Science and Engineering,

Chaitanya Bharathi Institute of Technology,

Hyderabad,
Telangana,

India.

Asfan Sajid
Department of Computer Science and Engineering,

Chaitanya Bharathi Institute of Technology,

Hyderabad,
Telangana,

India.

